Volume-4 Issue-6


Version
Download2
Stock
File Size4.00 KB
Create DateSeptember 6, 2017
Download

 Download Abstract Book 

S. No

Volume-4 Issue-6, June 2016, ISSN: 2319–6386 (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd. 

Page No.

1.

Authors:

Aakanksha Pundir, Sumit Chaudhary

Paper Title:

Homomorphic Hybrid Encryption Technique using IKC and IEC Algorithms

Abstract:  Distributed computing is a pliable, practical, and affirmed conveyance stage for giving business or shopper IT administrations in abundance of the Internet. For the best Performance and most superb security of distributed computing, we proposed Homomorphic half and half encryption strategy. With the advancement of Cloud Computing, Computer Network and Communication Technology, an enormous gathering of information and data require to be traded by open correspondence systems. High adequacy and high security of information transmission turn out to be a great deal more essential. In this paper we proposed Homomorphic Encryption strategy, Identity based Key Cryptosystem (IKC) and Identity based Encryption Cryptosystem (IEC) are broadly utilized two calculations of topsy-turvy encryption innovation. Both are ideal and top protection homomorphism, mix of IEC and IKC recharged to half breed calculation, which are capable to secure cloud information since Homomorphic encryption permits direct scrambled correspondence in distributed computing. Here first we are producing key from IKC then these private and open keys took after by IEC with the end goal of encryption/decoding, later Homomorphic encryption is connected for a protected encoded correspondence of clients in distributed computing.

Keywords:
  Cloud, cryptosystem, distributed, homomorphic.


References:

1.       X.Li, X.Shen&H.Chen, “Encryption Digital Signature Algorithm of Adding a Random Number”, JOURNAL OF NETWORKS, VOL. 6,NO. 5, MAY 2011
2.       Nentawe Y. Goshwe, (2013). Data Encryption and Decryption Using RSA Algorithm in a NetworkEnvironment. IJCSNS International Journal of Computer Science and Network Security, VOL.13No.7.

3.       S. Subasree, N. K. Sakthivel, (2011), Design of a New Security Protocol Using Hybrid CryptographicAlgorithms, ICECT.

4.       P. Gutmann, (2004). Cryptographic Security Architecture: Design andVerification‖. Springer-Verlag.

5.       Suyash Verma, RajnishChoubey, RoopaliSoni, (2012).An Efficient Developed New Symmetric Key Cryptography Algorithm for Information Security. International Journal of Emerging Technology and Advanced Engineering, ISSN 2250-2459, Volume 2, Issue 7.

6.       Ravindra Kumar Chahar and et.al, (2007), Design of a new Security Protocol, IEEE InternationalConference on Computational Intelligence and Multimedia Applications, pp 132 – 134

7.       Guilin Wang, An Abuse-Free Fair Contract-Signing Protocol Based on the based on RSA Signature, Information Forensics and Security, IEEE Transactions on, (Volume:5), Issue: 1, ISSN:1556-6013 , INSPEC : 11149510.

8.       WANG Shaobin, HONG Fan, ZHU Xian, Optimistic Fair-exchange Protocols Based on DSA Signatures, Services Computing, 2004. (SCC 2004). Proceedings. 2004 IEEE International Conference, E-ISBN: 0-7695- 2225-4, INSPEC: 8273373.

9.       Afolabi, A.O and E.R. Adagunodo, (2012). Implementation of an improved data encryption algorithmin a web based learning system. International Journal of research and reviews in Computer Science. Vol. 3, No. 1.

10.    Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Kleinjung, and Christophe Wachter, Ron was wrong, Whit is right. EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland, Self, Palo Alto, CA, USA.

11.    ArvindNegi, Punit Sharma, PrasantChaudhary and Himanshu Gupta. New Method for Obtaining Digital Signature Certificate using Proposed RSA Algorithm. International Journal of Computer Applications 121(23):24-29, July 2015.

12.    Markoff, John (February 14, 2012). Flaw Found in an Online Encryption Method. New York Times.

13.    Willian Stallings, Cryptography and Network Security Principles and Practices, Fourth Edition.

14.    Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, (2012), Operating System Concepts. Wiley India Pvt Ltd, Sixth Edition.

 

1-5

www.blueeyesintelligence.org/attachments/File/fee/2checkout_download.html

2.

Authors:

G. Kiran Kumar, M. Krupa Swaroopa Rani, K. Kameswara Rao, M. Krishnaiah

Paper Title:

Rayleigh Lidar unusual Stratospheric Temperature Inversion following the Stratospheric Warming

Abstract:   Rayleigh Lidar system established at National Atmospheric Research Laboratory (NARL) over a tropical site, Gadanki (13.8o N, 79.2o E), is operational since March 1998.  Using photon count profiles and a model atmosphere (CIRA-86) temperature profiles are derived for the height range of 30-80 km. 628 Rayleigh Lidar observations covering the altitude range of stratosphere and mesosphere collected during the period March 1998 – August 2006. The long-term knowledge of this temperature profile has allowed us to know its average climatology as well as the nighttime evolution. During the period of Mar 2003 we observed profiles which differ considerably from the average for the same period in other years. Specially, profile obtained on the night 27 Mar 2003 called our attention by presenting an unusual stratospheric inversion layer with a decrease of 10-12 K between 38-41 km and there was a minor warming on stratopause. Analysis of additional SABER temperature data showed that inversion layer at the same altitude.

Keywords:  (NARL), (13.8o N, 79.2o E), (CIRA-86), SABER10-12 K between, Rayleigh Lidar systems

References:

1.       Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km”,Geophys. Res. Lett. 7, 565-568 (1980).
2.       A. Hauchecorne, M. L. Chanin, P. Keckhut, D. Nedeljkovic, “Lidar monitoring of the temperature in the       middle and lower atmosphere”, Appl. Phys. B 55, 29-34         (1992).

3.       A. Hauchecorne, M. L. Chanin, P. Keckhut, “Climatology and trends of the middle atmospheric-temperature                 (33-87     km) as seen by Rayleigh lidar over the so7uth of France”, J.        Geophys. Res. 96, 15297-15309 (1991).

4.       Adriani, G. P. Gobbi, F. Congeduti, G. di Donfrancesco, “Lidar observations of stratospheric and mesospheric temperature - November 1988-November 1989”, Ann. Geophys. 9, 252-258, (1991).

5.       G. P. Gobbi, C. Souprayen, F. Congeduti, G. Didonfrancesco, A. Adriani, M. Viterbini, S. Centurioni,           “Lidar observations of middle atmosphere temperature         variability”, Ann. Geophys.-Atmos. Hydros. Space Sci. 13,    648-655 (1995).

6.       V. Siva Kumar, P. B. Rao, M. Krishnaiah, “Lidar measurements of stratosphere-mesosphere thermal structure at a low latitude: Comparison with satellite data    and models”, J. Geophys. Res, 108, 4342 (2003).

7.       J. B. Nee, S. Thulasiraman, W. N. Chen, M. Venkat Ratnam, D. Narayana Rao, “Middle atmospheric temperature structure over two tropical locations, Chung Li         (25°N,121°E) and Gadanki (13.5°N,79.2°E)”, J. Atmos.         Sol.-Terr. Phy. 64, 1311-1319 (2002).

8.       Q. H. Chang, G. T. Yang, S. S. Gong, “Lidar observations of the middle atmospheric temperature characteristics over Wuhan in China”, J. Atmos. Sol.-Terr. Phy. 67, 605-610 (2005).

9.       T. D. Kawahara, C. S. Gardner, A. Nomura, “Observed temperature structure of the atmosphere above Syowa Station, Antarctica (69°S, 39°E)”, J. Geophys. Res., 109,         D12103 1-9 (2004).

10.    A. Hauchecorne, M. L. Chanin, “A mid-latitude ground based lidar study of stratospheric warmings and planetary        wave propagation”, J. Atmos. Sol.-Terr. Phy. 44, 577-583 (1982).

11.    P. Kishore, S. P. Namboothiri, K. Igarashi, V. Sivakumar, S. Thulasiraman, I. V. Subba Reddy, K. Mizutani, D. Narayana Rao, S. V. B. Rao, Y. Bhavani Kumar, Rayleigh lidar observations of planetary waves in the middle atmosphere over Gadanki (13.5° N, 79.2 ° E)”, J. Atmos. Sol.-Terr. Phy. 68, 901-910 (2006).

12.    J. D. Wild, M. E. Gelman, A. J. Miller, M. L. Chanin, A. Hauchecorne, P. Keckhut, R. Farley, P. D. Dao, J. W. Meriwether, G. P. Gobbi, F. Congeduti, A. Adriani, I. S. McDermid, T. J. McGee, E. F. Fishbein, “Comparison of stratospheric temperatures from several lidars, using national-meteorological-center and microwave limb sounder data as transfer references”, J. Geophys. Res. 100, 11105-11111 (1995).

13.    E. E. Remsberg, P. P. Bhatt, L. E. Deaver, “Seasonal and longer-term variations in middle atmosphere temperature from HALOE on UARS”, J. Geophys. Res. 107, 18.1-18.13(2002).

14.    Hauchecorne, M. L. Chanin, R. Wilson, “Mesospheric temperature inversion and gravity wave breaking”, Geophys. Res. Lett. 14, 933-936 (1987).

15.    T Leblanc, A. Hauchecorne, “Recent observations of mesospheric temperature inversions”, J. Geophys. Res. 102, 19471-19482 (1997).

16.    V. Siva Kumar, Y. B. Kumar, K. Raghunath, P. Rao, B. Krishnaiah, K. Mizutani, A. Taori, M. Yasui, T. Itabi, “Lidar measurements of mesospheric temperature inversion at low latitude”, Ann. Geophys. 19, 1039- 1044 (2001).

17.    H.-L. Liu, J. W. Meriwether, “Analysis of a temperature inversion event in the lower mesosphere”, J. Geophys. Res. 109, D02S07 (2004).

18.    S. Fadnavis, G. Beig, “Mesospheric temperature inversions over the Indian tropical region”, Ann. Geophys. 22, 3375-3382 (2004).

19.    Andrews, D.G., J.R. Holton, and C.B. Leovy, Middle Atmosphere Dynamics. Academic Press, 1985.

20.    Sivakumar,V., B. Morel, H. Bencherif, J. L. Baray, S. Baldy, A. Hauchecorne, and P.B. Rao, Rayleigh LiDAR observation of a warm stratopause over a tropical site, Gadanki (13.5°N; 79.2°E), Atmos. Chem. Phys., 4, 1989-1996,2004.

21.    Matsuno, T.: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479-1494, 1971.

22.    Whiteway, J.A., and A.I. Carswell, Rayleigh LiDAR Observations of Thermal Structure and Gravity Wave Activity in the High Arctic during a Stratospheric Warming. J. Atmos. Sci. 51, 3122-3136, 1994.

23.    Donfrancesco G., A. Adriani, G.P. Gobbi., and F. Congeduti, LiDAR observations of stratospheric temperatures above McMurdo Station (78S, 167E), Antarctica . J. Atmos. Terr. Phys., 58, 1391-1399, 1996.

24.    Whiteway, J.A., T.J. Duck, D.P. Donovan, J.C. Bird, S.R. Pal., and Carswell, Measurements of gravity wave activity within and around the Arctic stratospheric vortex, Geophys. Res. Lett., 24, 1387-1390. 1997.

25.    Duck, T. J., J. A. Whiteway, and A.I. Carswell, LiDAR observations of gravity wave activity and Arctic stratospheric vortex core warming, Geophys. Res. Lett., 25, 2813-2816, 1998.

26.    Walterscheid, R. L., G. Sivjee, and R.G. Roble, Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada (80°N), Geophys. Res. Lett., 27, 2897-2900, 2000.

27.    Hauchecorne, A., and M.L. Chanin, Mid latitude observations of planetary waves in the middle atmosphere during the winter over 1981–1982, J. Geophys. Res., 88, 3843-3849, 1983.

28.    Charyulu, D. V., V. Sivakumar, H. Bencherif, G. Kirgis, A. Hauchecorne and D. Narayana Rao, 20-year LiDAR observations of stratospheric sudden warming over a mid-latitude site, Observatoire de Haute Provence (44°N, 6°E): Case study and statistical characteristics. Atmos. Chem. Phys. Discuss., 2007.

29.    Sivakumar,V., B. Morel, H. Bencherif, J. L. Baray, S. Baldy, A. Hauchecorne, and P.B. Rao, Rayleigh LiDAR observation of a warm stratopause over a tropical site, Gadanki (13.5°N; 79.2°E), Atmos. Chem. Phys., 4, 1989-1996, 2004.

30.    Sivakumar.V., Y. Bhavanikumar, K. Raghunath, P.B. Rao, M. Krishnaiah, K. Mizutani, T. Aoki, M. Yasui, and T. Itabe, LiDAR measurements of mesospheric temperature inversion at a low latitude, Ann. Geophys., 19, 1039-1044, 2001.

31.    Sivakumar, V., P.B. Rao, and M. Krishnaiah, LiDAR studies of Stratosphere-Mesosphere Thermal Structure over Low Latitude: Comparison with satellite and models, J. Geophys. Res., 108 (D11), 4342, doi: 10.1029/2002JD003029, 2003.

32.    Timed Web Site. http://www.timed.jhuapl.edu.

33.    Sivakumar, V., H. Bencherif, A. Hauchecorne, P. Keckhut, D.N. Rao, S. Sharma, H. Chandra, A. Jayaraman and P.B. Rao, Rayleigh LiDAR observations of double stratopause structure over three different northern hemisphere stations, Atmos. Chem. Phys. and Discuss., 6, 6933-6956, 2006.

34.    http://researchspace.csir.co.za/dspace/bitstream/10204/3279/1/Charyulu1_2007.pdf

 

6-10

www.blueeyesintelligence.org/attachments/File/fee/2checkout_download.html

3.

Authors:

Kumsr Vinayak, Owais Ahmad

Paper Title:

Design D Flip-Flop for Low Power Application

Abstract: Power consumption is a major problem of system performance and it is listed as one of the top three challenges in International Technology for Semiconductor. In practice, a large portion of the on chip power is consumed by the clock system which is made of the clock distribution network and flip-flops. In this thesis, various design techniques for a low power clocking system are surveyed. Among them minimizing a number of clocked transistor is an effective way to reduce capacity of the clock load. To approach this, we propose a conditional data mapping technique which reduces the number of local clocked transistors.

Keywords:  Flip Flop, Low Power, CMOS Circuit.

References:

1.       B. Kong, S. Kim, and Y. Jun, “Conditional-capture flip-flop for statistical power reduction,” IEEE J. Solid-State Circuits, vol. 36, no. 8, pp. 1263–1271, Aug. 2001.
2.       C. L. KimandS.Kang, “A low-swing clock double edge-triggered flip-flop,” IEEEJ. Solid- State Circuits, vol.37, no.5, pp.648–652, May2002.

3.       P. Zhao, T. Darwish, and M. Bayoumi, “High-performance and low power conditional discharge flip-flop,” IEEE Trans. Very Large Integr. (VLSI) Syst., vol. 12, no. 5, pp. 477–484, May 2004.

4.       Kong Teh, Mototsugu Hamada, Tetsuya Fujita,Hiroyuki Hara, Nobuyuki Ikumi, and Yukihito Oowaki”Conditional Data Mapping Flip-Flops for Low-Powerand High- Performance Systems” IEEE transactions on very large scale integration (vlsi) system vol. 14, no. 12, december 2006.

5.       B. S. Kong, S.-S. Kim, and Y.-H. Jun Peiyi Zhao, Jason McNeely, WeidongKuang, ,and “Design of Sequential Elements for Low PowerClocking System” IEEE Transaction May 2011.

6.       A Survey on Sequential Elements for Low Power Clocking System”Journal of Computer Applications ISSN:,Volume-5, Issue EICA2012-3, feb 10, 2012.

7.       Seyed E. Esmaeili, Asim J. Al-Kahlili, and Glenn E. R. Cowan”Low-Swing Differential Conditional Capturing Flip-Flop for LC Resonant Clock Distributio Networks” IEEE transactions on very large scale integration (vlsi) systems, vol. 20,no. 8, august 2012.

8.       N. Nedovic, W. W. Walker, and V. G. Oklobdzija, “A test circuit for measurement of clocked storage element characteristics,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1294–1304, Aug. 2004.

9.       D. Markovic, B. Nikolic, and R. W. Brodersen, “Analysis and design of low-energy flip- flops,” in Int. Symp. Low Power Electron. Des. Tech. Dig., 2001, pp. 52–55.

10.    P. Zhao, J. McNeely, S.Venigalla, G.P. Kumar,M. Bayoumi, N.Wang, and L. Downey,“Clocked-pseudo-NMOS flip-flops for level conversion in dual supply systems,IEEE Trans. Very Large Scale Integr. (VLSI) Syst., to bepublished.

11.    J. Tschanz, S. Narendra, Z. P. Chen, S. Borkar,M. Sachdev, and V. De, “Comparative delay and energy of single edge-triggered & dual edge triggered pulsed flip-flops for high-performance microprocessors,” in Proc. ISPLED, Huntington Beach, CA, Aug 2001, pp. 207–212.

12.    G. Oklobdzija, V. M. Stojanovic, D. M. Markovic, and N. M. Nedovic, "High- Performance System Issues," in Digital System Clocking High-Performance and Low Power Aspects.: John Wiley & Sons, Inc., 2003, ch. 5, pp. 83-103.

13.    Bellaouar, "Why Low Power?," in Low-Power Digital VLSI Design: Circuits and Systems.: Kluwer  Academic Publishers, 1995, ch. 1, pp. 1-12.

14.    Z. Peiyi, T. Darwish, and M. Bayoumi, "Low power and high speed explicit-pulsed flip-  flops," in 45th Midwest Symposium on Circuits and Systems, 2002, vol. 2, no. 2,pp. 477-  480.

15.    H. Kawaguchi and T. Sakurai, "A reduced clock-swing flip-flop (RCSFF) for 63% power  reduction," in IEEE Journal of Solid State Circuits, vol. 33, pp. 807-811, 1998.

16.    Vojin G. Oklobdzijia and Ram K. Krishnamurthy, "Clocked Storage Elements in Digital Systems," in High-Performance Energy-Efficient Microprocessor Design. Springer, 2006,  ch. 3, pp. 57-168.

17.    J. W. P. William J. Dally," Timing Circuits," in Digital Systems Engineering.: Cambridge  University Press, 1998, ch. 12, pp.574-583.

18.    C. C. Yu, "Low-Power Double Edge-Triggered Flip-Flop Circuit Design," in International Conference on Innovative Computing Information and Control, 2008, pp. 566-566.

19.    Stojanovic and V. G. Oklobdzija, "Comparative analysis of master-slave latches and  flip-flops for high-performance and low-power systems," IEEE Journal of Solid-State  Circuits, vol. 34, pp. 536-548, 1999.

20.    C.-C. Wang, G.-N. Sung, M.-K. Chang, and Y.-Y. Shen, "Energy-Efficient Double-Edge  Triggered Flip-Flop," in Journal of Signal Processing Systems, vol. 61, pp. 347-352, 2010.

21.    D. F. Michael Keating, Rob Aitken, Kaijian Shi, "Introduction," in Low Power  Methodology Manual For System-on-Chip Design.: Springer, 2007, ch. 1, pp. 1-12.

22.    V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic, and N. M. Nedovic, "Timing Energy Parameters," in Digital System Clocking High- Performance and Low Power Aspects.: John Wiley & Sons, Inc., 2003, ch. 3, pp. 47-62.

23.    H. Partovi, R. Burd, U. Salim, F. Weber, L. DiGregorio, and D. Draper, "Flow- through  latch and edge-triggered flip-flop hybrid elements," in IEEE International Solid-State Circuits Conference, 1996, pp. 138-139.

24.    D. H. a. H. Jackson, "High-Speed CMOS Lgic Design," in Analysis and Design of Digital Integrated Circuits in deep submicron technology.: Mc Graw Hill, 1998, ch. 6, pp. 245-270.

25.    J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W. Dobberpuhl, P M. Donahue, J. Eno, W. Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin, L Madden, D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stehpany, and S. C. Thierauf, "A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor," in IEEE Journal of Solid-State Circuits, vol. 31, pp. 1703-1714, 1996

26.    B. Nikolic, V. Stojanovic, V. G. Oklobdzija, J. Wenyan, J. Chiu, and M. Leung, "Sense amplifier-based flip-flop," in Solid-State Circuits Conference,1999 Digest of Technical Papers. ISSCC. 1999 IEEE International, 1999, pp. 282-283.

27.    D. DeCaro, E. Napoli, N. Petra, and A. G. M. Strollo, "A high-speed sense-amplifier based flip-flop," in Conference on Circuit Theory and Design ,2005, vol. 2,no. 2, pp.99- 102

28.    B. Nikolic, V. G. Oklobdzija, V. Stojanovic, J. Wenyan, C. James Kar-Shing, and M. Ming-Tak Leung, "Improved sense-amplifier-based flip-flop: design and measurements," in IEEE Journal of Solid-State Circuits vol. 35, pp. 876-884, 2000.

29.    G. M. Strollo, D. De Caro, E. Napoli, and N. Petra, "A novel high-speed sense- amplifier-based flip-flop," in IEEE Transactions on Very Large Scale Integration(VLSI) System, vol. 13, pp. 1266-1274, 2005.

30.    M. Afghahi and J. Yuan, "Double-edge-triggered D-flip-flops for high-speed CMOS  circuits,"in IEEE Journal of Solid-State Circuits, vol. 26, pp. 1168-1170, 1991.

31.    G. Aliakbar and M. Hamid, "Dual-edge triggered static pulsed flip-flops," in  International Conference on VLSI Design, 2005, pp. 846-849.

32.    M. W. Phyu, W. L. Goh, and K. S. Yeo, "A low-power static dual edge-triggered flip-  flop using an output-controlled discharge configuration," in IEEE International  Symposium on Circuits and Systems, 2005, pp. 2429-2432 Vol. 3.

33.    J. Tschanz, S. Narendra, C. Zhanping, S. Borkar, M. Sachdev, and D. Vivek,  "Comparative delay and energy of single edge-triggered and dual edge-triggered pulsed  flip-flops for high-performance microprocessors," in International Symposium on Low  Power Electronics and Design, 2001, pp. 147-152.

34.    L. Goh Wang, S. Yeo Kiat, W. Zhang, and G. Lim Hoe, "A Novel Static Dual Edge-  Trigger Flip-flop for High-Frequency Low-Power Application," in International  Symposium on Integrated Circuits, 2007, pp. 208-211.

35.    P. Myint Wai, F. Kangkang, G. Wang Ling, and Y. Kiat-Seng, "Power-Efficient  Explicit-Pulsed Dual-Edge Triggered Sense-Amplifier Flip-Flops," in IEEE  Transactions on Very Large Scale Integration (VLSI) Systems,, vol. 19, pp. 1-9, 2011.

36.    J.-I. Kim and B.-S. Kong, "Dual edge-triggered flip-flop with modified NAND keeper  for high-performance VLSI," in Current Applied Physics, vol. 4, pp. 49-53, 2004.

37.    C. K. Teh, M. Hamada, T. Fujita, H. Hara, N. Ikumi, and Y. Oowaki, "Conditional Data  Mapping Flip-Flops for Low-Power and High-Performance Systems," in IEEE  Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, pp. 1379-1383,  2006.

38.    Z. Peiyi, T. K. Darwish, and M. A. Bayoumi, "High-performance and low-power  conditional discharge flip-flop," in IEEE Transactions on Very Large Scale Integration  (VLSI) Systems, vol. 12, pp. 477- 484, 2004.

39.    K. Bai-Sun, K. Sam-Soo, and J. Young-Hyun, "Conditional-capture flip-flop for statistical  power reduction," in IEEE Journal of Solid-State Circuits, vol. 36, pp. 1263-1271, 2001.

40.    C. Y. Kiang, "Low Power Circuits for High Performance Systems," in Final Year Project  Report , Nanyang Technological University, 2010.

 

11-15

www.blueeyesintelligence.org/attachments/File/fee/2checkout_download.html

4.

Authors:

Monal R. Sharma, S. S. Asole

Paper Title:

An Overview of Cloud Computing and Security Issues

Abstract:  Cloud computing is a kind of Internet-based computing that provides shared processing resources and data to computers and other devices on demand. Security in Cloud computing is an important and critical aspect, and has numerous issues and problem related to it. Cloud service provider and the cloud service consumer should make sure that the cloud is safe enough from all the external threats so that the customer does not face any problem such as loss of data or data theft. This paper presents a review on the cloud computing concepts as well as security issues inherent within the context of cloud computing and cloud infrastructure.

Keywords:   cloud computing, security issues, SaaS, PaaS, LaaS,

References:

1.       Muhammad Baqer Mollah, Kazi Reazul Islam*, Sikder Sunbeam Islam “Next Generation of Computing through Cloud Computing Technology”
2.       Prince Jain “Security Issues and their Solution in Cloud Computing”

3.       Rabi Prasad Padhy,  Manas Ranjan Patra, Suresh Chandra Satapathy “Cloud Computing: Security Issues and Research Challenges”

4.       Monjur Ahmed and Mohammad Ashraf  Hossain “Cloud Computing and security issues in cloud”

5.       Pankaj Arora, Rubal Chaudhry Wadhawan, Er. Satinder Pal Ahuja “Cloud Computing Security Issues in Infrastructure as a Service”

6.       MohsinNazir “Cloud Computing: Overview & Current Research Challenges”

7.       VahidAshktorab, Seyed Reza Taghizadeh “Security Threats and Countermeasures inCloud Computing”

8.       Abhishek Goel, ShikhaGoel “Security Issues in Cloud Computing”

9.       Pradeep Kumar Tiwari, Dr. Bharat Mishra “Cloud Computing Security Issues, Challenges and Solution”

10.    NirKshetri “Privary and security issues in cloud computing”

 

16-19

www.blueeyesintelligence.org/attachments/File/fee/2checkout_download.html